Алгоритм корректировки температурных параметров модели атмосферы

Шишигин С.А.

Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения РАН пл. Академика Зуева, 1, 634055, г. Томск, Россия, <u>ssa@iao.ru</u>

АННОТАЦИЯ

В докладе приводится анализ модели атмосферы, представленной в виде одного и двух однородных слоёв до высоты 5 км. Параметры слоёв определены для стандартной атмосферы. Определяются температуры слоёв воздуха и подстилающей поверхности Земли при минимальной разности рассчитанного содержания метана по уходящему излучению атмосферы по каждому спектральному участку 1235,95-1236 см⁻¹ и 1277,5-1277,55 см⁻¹ полосы поглощения метана с противоположной зависимостью функции поглощения излучения метана от изменения температуры.

1. ВВЕДЕНИЕ

Высокая скорость изменения содержания парниковых газов в атмосфере, влияющих на климат планеты, обуславливает важность задачи их мониторинга с помощью спутникового и наземного зондирования в инфракрасном диапазоне спектра с высоким разрешением¹⁻⁵. Определение атмосферных параметров и содержания исследуемых газов из результатов наблюдений ИК спектров атмосферы представляет некорректную обратную задачу с необходимостью знания точной априорной информацией о вертикальном профиле температуры атмосферы и подстилающей поверхности Земли, влияющей на погрешность решения⁶⁻¹⁰.

Особенностью колебательно-вращательных полос поглощения метана является зависимость спектрального коэффициента поглощения от изменения температуры. Заселенность электронами колебательновращательных уровней полосы поглощения метана в одних участках спектра с ростом температуры уменьшается, в то время как в других участках спектра она возрастает при температурах воздуха в атмосфере¹¹.

Ошибка в температурном профиле в несколько градусов может давать сравнимый вклад с вариациями среднего содержания газов (CH₄ – 8%, CO₂ - 2%) в функцию пропускания атмосферы¹².

Для устранения влияния ошибки модельного профиля температуры атмосферы на погрешность определения содержания парниковых газов в воздухе по измерениям ИК спектров в работе¹² предложено использовать спектральные линии, слабо зависящие от вариаций температуры воздуха. Показано существенное снижение влияния вариации температуры воздуха на изменение функции пропускания излучения атмосферой в отобранных линиях.

В статье¹³ предложено определять содержание метана в атмосфере одновременно в двух спектральных участках уходящего излучения атмосферы в крыле линии в P - ветви (1240,901-1240,949 см⁻¹) и R - ветви (1327,12-1327,17см⁻¹) полосы поглощения метана с противоположной зависимостью коэффициента поглощения излучения метана от изменения температуры газа. R- ветвь характеризуется сильным поглощением и обычно не используется при обработки уходящего излучения Земли. Коэффициенты молекулярного поглощения в P-ветви и R-ветви отличались почти в 10 раз.

В данной работе рассмотрена возможность корректировки эффективной как температуры слоя воздуха, так и подстилающей поверхности Земли при определении содержания метана в атмосфере на основе анализа уходящего излучения Земли только в *P* - ветви полосы поглощения метана.

2. АЛГОТИТМ РАСЧЁТ ТЕМПЕРАТУРЫ СЛОЁВ ВОЗДУХА И ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ ЗЕМЛИ

Мощность уходящего излучения атмосферы в спектральном участке *Дv* представим в виде суммы излучения поверхности Земли и однородного слоя воздуха:

$$S = \int_{\Delta v} P_{3}(v,Q_{3}) \cdot T_{c}(v,Q) dv + \int_{\Delta v} (1 - T_{c}(v,Q)) \cdot B_{c}(v,Q) dv$$

Где $T_c(v,Q)$ спектральная функция пропускания излучения слоя атмосферы при температуре Q, $P_3(v,Q_3)$ спектральная яркость излучения поверхности Земли при температуре Q_3 . $B_c(v,Q)$ -излучение абсолютно черного тела на частоте v. Эффективная температура Q слоя воздуха зависит от функции пропускания атмосферы и следовательно изменяется для разных спектральных участков спектра. Солнечной радиацией в дальней инфракрасной области спектра пренебрегаем. Излучение Солнца у поверхности Земли в дальней инфракрасной области спектра пренебрегаем. Излучение Солнца у поверхности Земли. Аэрозольное ослабление излучения в дальней ИК области спектра для слабо замутнённой атмосферы незначительно и его не учитываем¹⁴. Мощность уходящего излучения в узком спектральном участке Δv для температуры Q_1 и Q_2 эффективного однородного слоя атмосферы, считая эффективные значения $P_3(v,Q_3)$, $B_c(v,Q)$ не зависимыми от частоты излучения, равна:

$$\begin{cases} S_{1,M} = \Delta v \cdot \mathbf{P}_{3}(Q_{3}) \cdot T_{c1}(Q_{1}) + (1 - T_{c1}(Q_{1})) \cdot B_{c1}(Q_{1}) \\ S_{2,M} = \Delta v \cdot \mathbf{P}_{3}(Q_{3}) \cdot T_{c2}(Q_{2}) + (1 - T_{c2}(Q_{2})) \cdot B_{c2}(Q_{2}) \end{cases}$$

T_{cl} , T_{c2} -средние значения функции пропускания слоя в спектральном участке частот Δv

Из полученного соотношения определяется коэффициент τ_l , определяющий изменение среднее значение функции пропускания слоя воздуха в зависимости от изменения его температуры представим в виде: $T_{c2}(Q_2) = T_{c1}(Q_1) \cdot \exp(-\tau_1 \cdot (Q_2 - Q_1))$. Аналогичные коэффициенты τ_n вычисляются для каждого слоя воздуха и спектрального участка в рассматриваемой модели двухслойной атмосферы.

Для модели атмосферы из двух однородных слоёв и двух спектральных участков уходящего излучения Δv_1 и Δv_2 отклонение мощности уходящего излучения ΔS_1 , ΔS_2 от мощности излучения для выбранной модели атмосферы из-за изменения содержания газа в каждом из слоёв атмосферы можно записать в виде системы двух уравнений¹³;

$$\begin{cases} \langle \Delta S_1 \rangle = S_1^* - S_{2,1} = C_{1,1} \cdot (1 - \alpha_{1,1} \cdot \Delta N_2) \cdot \Delta N_1 + C_{2,1} \cdot \Delta N_2 \\ \langle \Delta S_2 \rangle = S_2^* - S_{2,2} = C_{1,2} \cdot (1 - \alpha_{1,2} \cdot \Delta N_2) \cdot \Delta N_1 + C_{2,2} \cdot \Delta N_2 \end{cases}$$

Параметры C_{1,1}, C_{2,1}, C_{1,2}, C_{2,2}, $\alpha_{1,1}$, $\alpha_{1,2}$, определяют влияние изменения содержания исследуемого газа в слоях ΔN_1 , ΔN_2 на изменение мощности уходящего излучения стандартной атмосферы $\langle \Delta S_1^0 \rangle$, $\langle \Delta S_2^0 \rangle$ и рассчитываются аналитически. $C_{I,I} = \langle \Delta S_{1,0}^0 \rangle / \Delta N_1$, где $\langle \Delta S_{1,0}^0 \rangle = \langle \Delta S_1^0 \rangle$ при $\Delta N_2 = 0$; $C_{I,2} = \langle \Delta S_{2,0}^0 \rangle / \Delta N_1$, где $\langle \Delta S_{2,0}^0 \rangle = \langle \Delta S_2^0 \rangle$ при $\Delta N_2 = 0$; $C_{I,2} = \langle \Delta S_{2,0}^0 \rangle / \Delta N_1$, где $\langle \Delta S_{2,00}^0 \rangle = \langle \Delta S_2^0 \rangle$ при $\Delta N_2 = 0$; $C_{2,2} = \langle \Delta S_{2,00}^0 \rangle / \Delta N_2$, где $\langle \Delta S_{2,00}^0 \rangle = \langle \Delta S_2^0 \rangle$ при $\Delta N_1 = 0$; $C_{2,2} = \langle \Delta S_{2,00}^0 \rangle / \Delta N_2$, где $\langle \Delta S_{2,00}^0 \rangle = \langle \Delta S_2^0 \rangle$ при $\Delta N_1 = 0$; $\alpha_{1,1} = (C_{2,1} \cdot \Delta N_2 + C_{I,1} \cdot \Delta N_1 - \langle \Delta S_1^0 \rangle) / (C_{I,1} \cdot \Delta N_1 \cdot \Delta N_2)$; $\alpha_{1,2} = (C_{2,2} \cdot \Delta N_2 + C_{I,2} \cdot \Delta N_1 - \langle \Delta S_2^0 \rangle) / (C_{I,2} \cdot \Delta N_1 \cdot \Delta N_2)$;

Решение системы уравнений проводится сначала для однослойной модели атмосферы ($\Delta N_2=0$) при температуре поверхности Земли и варьировании эффективной температуры однородного слоя воздуха. Определяется минимальная разность $\Delta N_{\Delta \nu 1}$ - $\Delta N_{\Delta \nu 2}$ рассчитанного содержания метана в атмосфере по уходящему излучению Земли в каждом исследуемом спектральном участке, соответствующая конкретному значению температуры поверхности Земли Q_3 , и эффективной температуре модельного однородного слоя атмосферы Q.

Дальнейшие вычисления проводятся для двухслойных моделей атмосферы с возможными толщинами слоёв при температуре Q_3 и $\Delta N_{\Delta \nu 1}$, $\Delta N_{\Delta \nu 2}$. Знание общего содержания метана в атмосфере позволяет выразить содержание метана в одном из слоёв системы уравнений как $\Delta N_1 = \Delta N_{\Delta \nu 1} - \Delta N_2$ в первом уравнении и $\Delta N_1 = \Delta N_{\Delta \nu 2} - \Delta N_2$ во втором. Уравнения становятся с одним неизвестным, которое находится для всех возможных моделей двухслойной атмосферы, при минимальной разности искомых значений варьируя множитель перед значениями эффективных значений температуры каждого слоя.

Чувствительность величины мощности уходящего излучения в спектральных участках 1235,95-1236 см⁻¹, 1277,5-1277,55 см⁻¹ к содержанию исследуемого газа в слое равна соответственно $C_I = \Delta S_{IM} / \Delta N$ и $C_{IR} = \Delta S_{2M} / \Delta N$. Отклонение содержания газа в исследуемом слое от модельного при мощности прошедшего слой излучения S_I , S_2 , определяется по величине отклонения содержания газа от модельного $\Delta N_x = (S_I - S_{IM})/C_{Ip}$ или $\Delta N_x = (S_2 - S_{2M})/C_{IR}$.

Используя рассчитанные значения эффективных температур и соответствующих им средние значения функций пропускания и спектральной энергетической яркости теплового излучения слоёв двухслойных моделей атмосферы, определяются среднее значение функции энергетической яркости теплового излучения для каждого элементарного слоя рассматриваемой модели атмосферы по формуле:

$$B_n = \frac{(1 - T_c) \cdot B_c - (1 - T_{n-1}) \cdot T_{n+1} \cdot T_n \cdot B_{n-1} - (1 - T_{n+1}) \cdot B_{n+1}}{(1 - T_n) \cdot T_{n+1}}$$

Где T_{c} , B_{c} , T_{n-l} , B_{n-l} , T_n , B_n , T_{n+l} , B_{n+l} -средние значения функций пропускания и спектральной энергетической яркости теплового излучения всей толщи атмосферы, до слоя *n*, слоя *n*, над слоем *n*. Соотношение между ними имеет вид: $T_{c} = T_{n-l}$, $*T_n$, $*T_{n+l}$. Температура слоя определяется по формуле Планка $Q_n = hwc / K / \ln(2hw^3c^2 / B_n + 1)$ B_n [Bt/(см² ср см⁻¹], *c* [см/сек], $h = 6,626*10^{-34}$ [Дж сек], $K = 1,38*10^{-23}$ [Дж/град].

3. РЕЗУЛЬТАТЫ МОДЕЛЬНЫХ РАСЧЁТОВ ПАРАМЕТРОВ АТМОСФЕРЫ

Рассмотрена модель атмосферы в виде последовательности однородных 500 метровых слоёв до высоты 5 километров. Параметры слоёв определены для стандартной атмосферы (Таблица 1).

•	1		
		e	
-		,	

Таблица 1. Параметры модели атмосферы

Нм	T ⁰ K	T ⁰ K	Р атм	O ₂	N ₂	CH ₄	CO ₂	CO	N ₂ O	O ₃	H ₂ O
	экспер	модель		%	%	10 ⁻⁴ %	10 ⁻⁴ %	10 ⁻⁴ %	10 ⁻⁴ %	10-4%	$10^{-4}\%$
100	288,15	286,15	1	21	78	1,6	370	0,250	0,420	0,027	7730
300	286,85	284,85	0,9765	21	78	1,6	370	0,250	0,400	0,026	6800
500	285,55	283,55	0,9535	21	78	1,6	370	0,250	0,400	0,026	6800
800	283,6	281,6	0,91975	21	78	1,6	370	0,250	0,400	0,026	6800
1000	282,3	280,3	0,89781	21	78	1,6	370	0,250	0,400	0,026	6800
1300	280,35	278,35	0,86569	21	78	1,6	370	0,250	0,400	0,024	5000
1500	279,05	277,05	0,84479	21	78	1,6	370	0,250	0,400	0,024	5000
1800	277,1	275,1	0,81423	21	78	1,6	370	0,250	0,400	0,024	5000
2000	275,8	273,8	0,79435	21	78	1,6	370	0,250	0,400	0,024	5000
2300	273,85	273,85	0,76527	21	78	1,6	370	0,250	0,400	0,024	3700
2500	272,55	272,55	0,74637	21	78	1,6	370	0,250	0,400	0,024	3700
2800	270,6	270,6	0,71873	21	78	1,6	370	0,250	0,400	0,024	3700
3000	269,3	269,3	0,70076	21	78	1,6	370	0,250	0,400	0,024	3700
3300	267,35	267,35	0,6745	21	78	1,6	370	0,250	0,400	0,024	3700
3500	266,05	266,05	0,65744	21	78	1,6	370	0,250	0,400	0,024	3700
3800	264,1	264,1	0,63251	21	78	1,6	370	0,250	0,400	0,024	3700
4000	262,8	262,8	0,61631	21	78	1,6	370	0,250	0,400	0,024	3700
4300	260,85	260,85	0,59265	21	78	1,6	370	0,250	0,400	0,027	2600
4500	259,55	259,55	0,57729	21	78	1,6	370	0,250	0,400	0,027	2600
4800	257,6	257,6	0,55486	21	78	1,6	370	0,250	0,400	0,027	2600
5000	256,3	256,3	0,54030	21	78	1,6	370	0,250	0,400	0,027	2600

Рис.1 Зависимости средних значений функции поглощения метана в спектральных участках 1277,5-1277,55 см⁻¹ (1-2) и 1235,95-1236 см⁻¹ (3-4) при давлениях 1 атм. (1, 3) и 0,5 атм. (2, 4) от температуры.

Вклад в уходящее излучение атмосферы в исследуемых спектральных участках линии поглощения метана участках1235,95-1236 см⁻¹, 1277,5-1277,55 см⁻¹ равен вкладам в уходящее излучение Земли и всеми неоднородными слоями, их составляющими.

Зависимость среднего значения молекулярного коэффициента поглощения метана в спектральных участках 1235,95-1236 см⁻¹, 1277,5-1277,55 см⁻¹. от температуры приведена на рисунке 1. При расчётах спектров ослабления ИК излучения атмосферными газами использовалась информационная система "SPECTRA" ИОА СО РАН¹¹.

Проведены расчёты мощности уходящего излучения в каждом спектральном участке 1235,95-1236 см⁻¹, 1277,5-1277,55 см⁻¹ на высоте 5 км в зависимости от температур подстилающей поверхности. Определено содержание метана в воздухе в соответствии полученным значениям мощности уходящего излучению каждого спектрального участка, используя соотношение (2).

Рис. 2. Типичная зависимость минимальной разности содержания метана в атмосфере, рассчитанной по уходящему излучению в каждом спектральном участке 1235,95-1236 см⁻¹, 1277,5-1277,55 см⁻¹ в зависимости от вариации рассматриваемой модели температуры поверхности Земли. Справа в столбце указана температура поверхности Земли, соответсвующая конкретным значениям мощности уходящего излучения в данных спектральных участках.

Результаты нахождения минимальной разности содержания метана в атмосфере по уходящему излучению в каждом спектральном участке 1235,95-1236 см⁻¹, 1277,5-1277,55 см⁻¹ в зависимости от вариации рассматриваемой модели температуры поверхности Земли приведенына рисунке 2.

На рисунке 3 приведена зависимость разности мощностей Sp-Sr уходящего излучения из слоя атмосферы высотой 5 километров от температуры поверхности Земли при стандартном профиле температуры атмосферы ΔQ-0град (таблица 1) и смещенном профиле на -2 град, -3 град, -5 град, +5 град.

Разность мощности уходящего излучения в двух участках спектра с противоположной зависимостью коэффициента поглощения исследуемого газа от температуры однозначно характеризует как температуру поверхности Земли, так и температурный профиль атмосферы.

Получены минимальные значения разности содержания метана в слоях атмосферы, рассчитываемых по уходящему излучению атмосферы в каждом спектральных участке 1235,95-1236 см⁻¹, 1277,5-1277,55 см⁻¹ при температуре поверхности Земли 290 К и вариации температуры воздуха данных слоёв. Использовалось уходящее излучение в данных участках спектра при стандартном профиле температуры воздуха ΔQ -0град и смещенных профилях на -2 град, -3 град, -5 град, +5 град.

На рисунке 4 приведены, расчитанные отклонения профилей температур слоёв воздуха от стандартного профиля до высоты 5 км по соответствующей паре значений уходящего излучения.

Рис.3 Зависимость разности мощности уходящего излучения в участках 1235,95-1236 см⁻¹ и 1277,5-1277,55 см⁻¹ от температуры поверхности Земли

Рис. 4. Расчитанные отклонения профиля температур воздуха от стандартного до высоты 5 км по уходящему излучению, соответствующему стандартному профилю температуры воздуха ΔQ-0град и смещенным профилям на -2 град, -3 град, -5 град, +5 град.

4. ЗАКЛЮЧЕНИЕ

Выбраны два спектрального участка полосы поглощения метана с противоположной зависимостью коэффициента поглощения излучения от изменения температуры газа. Минимальное значение разности содержания метана в атмосфере, рассчитанное по уходящему излучению Земли в каждом из двух спектральных участков при вариации температуры поверхности Земли и температуры эффективного слоя атмосферы, наблюдается при совпадении данных температур с параметрами атмосферы. Результаты исследования могут быть использованы также в качестве методики для обработки спектров, полученных современными сенсорами, установленными на спутниках.

5. ЛИТЕРАТУРА

- 1. Антохина О.Ю., Антохин П.Н., Аршинова В.Г., Аршинов М.Ю., Белан Б.Д., Белан С.Б., Белов В.В., Гриднев Ю.В., Давыдов Д.К., Ивлев Г.А., Козлов А.В., Law K.S., Nedelec Ph., Paris J.-D., Рассказчикова Т.М., Савкин Д.Е., Симоненков Д.В., Скляднева Т.К., Толмачев Г.Н., Фофонов А.В. Сравнение распределения концентраций газовых примесей воздуха, измеренных дистанционными и контактными средствами над Российским сектором Арктики. // Оптика атмосферы и океана. 2018. Т. 31. № 07. С. 542–550.
- 2. Ракитин В.С., Штабкин Ю.А., Еланский Н.Ф., Панкратова Н.В., Скороходов А.И., Гречко Е.И., Сафронов А.Н. Результаты сопоставления спутниковых измерений общего содержания СО, СН₄, и СО₂ с наземными спектроскопическими данными // Оптика атмосферы и океана. 2015.Т.28. № 9. С. 816-824.
- 3. Грищенко М.Ю., Чернулич К.К. Исследование связи наземных и космических температурных данных на примере островов Врангеля и Кунашир // Изв. вузов «Геодезия и аэрофотосъемка». 2019. Т. 63. № 5. С. 566–575.
- Поляков А.В., Тимофеев Ю.М., Успенский А.Б. Возможности определения температуры и излучательной способности поверхности суши по данным спутниковых ИК-зондировщиков высокого спектрального разрешения (ИКФС-2) // Исследование Земли из космоса. 2010. № 4. С. 85–90.
- 5. Волкова Е.В., Успенский С.А. Дистанционное определение температуры подстилающей поверхности, приземной температуры воздуха и эффективной температуры по спутниковым данным для юга Европейской

территории России.// Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 5. С. 291–303.

- 6. Зверев А.Т., Фисенко Е.В. Современные методы определения засушливых земель по космическим снимкам // Изв. вузов «Геодезия и аэрофотосъемка». 2012. №3. С. 53–63.
- Sobrino J.A., Jimenez-Munoz J.C., Zarco-Tejada P.J., Sepulcre-Canto G., Miguel E. Land Surface Temperature Derived From Airborne Hyperspectral Scanner Thermal Infrared Data // Remote Sensing of Environment, 2006. Vol. 102. P. 99–115.
- Jimenez-Munoz J.C., Sobrino J.A., Skokovic D., Mattar C., Cristobal J. Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data // IEEE Geoscience and Remote Sensing Letters, 2014. V. 11, Is. 10. P. 1840–1843.
- 9. Suga Y., Ogawa H., Ohno K., Yamada K. Detection Of Surface Temperature From Landsat-7/ETM+ // Advances in Space Research, 2003. V. 32. Is. 11. P. 2235–2240.
- Jimenez-Munoz J.C., Cristobal J., Sobrino J.A., Soria G., Ninyerola M., Pons X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data // IEEE Geoscience and Remote Sensing Letters, 2009. V. 47. Is. 1. P. 339–349.
- 11. Михайленко С.Н., Бабиков Ю.Л., Головко В.Ф. Информационно-вычислительная система "Спектроскопия атмосферных газов". Структура и основные функции. // Оптика атмосферы и океана. 2005. Т. 18. № 09. С. 765-776.
- 12. Рокотян Н.В., Грибанов К.Г., Захаров В.И. Эффект температурно-независимого поглощения и его использование для зондирования парниковых газов в атмосфере. // Оптика атмосферы и океана. 2011. Т. 24. № 06. С. 510-515.
- 13. Шишигин С.А. Исследование корректировки определения содержания газа в воздухе по уходящему излучению атмосферы //Оптика атмосферы и океана. 2019. Т.32, №11. С. 925-929.
- 14.3уев В.Е. Распространение видимых и инфракрасных волн в атмосфере. М: Сов. радио. 1970. 496 с.